Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals.

نویسندگان

  • Zewei Quan
  • Zhenling Wang
  • Piaoping Yang
  • Jun Lin
  • Jiye Fang
چکیده

High-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) nanocrystals (NCs) were synthesized via a high-boiling solvent process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectra. The monodisperse ZnS NCs (size = 8 nm), which self-assembled into several micrometer-sized domains, were achieved by adopting poly(ethylene glycol) (PEG) in the reaction process (without using a size-selection process). The obtained ZnS:Mn2+ and ZnS:Mn2+/ZnS core/shell NCs are highly crystalline and quasimonodisperse with an average particle size of 6.1 and 8.4 nm, respectively. All of the as-formed NCs can be well dispersed in hexane to form stable and clear colloidal solutions, which show strong visible emission (blue for ZnS and red-orange for ZnS:Mn2+ and ZnS:Mn2+/ZnS) under UV excitation. The growth of a ZnS shell on ZnS:Mn2+ NCs, that is, the formation of ZnS:Mn2+/ZnS core/shell NCs, resulted in a 30% enhancement in the PL intensity with respect to that of bare ZnS:Mn2+ NCs due to the elimination of the surface defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of transition metal doped ZnSe/ZnS nanocrystals by a rapid photochemical method

In the present work, a one pot, rapid and room temperature photochemical Synthesis of transition metal (TM; Cu, Mn, Cr)-doped ZnSe/ZnS core/shell nanocrystals (NCs) was reported. FT-IR spectrum confirmed the capping of ZnSe by thioglycolic acid. XRD and TEM analysis demonstrated zinc blende phase NCs with an average size of around 3 and 5 nm for TM:ZnSe and TM:ZnSe/ZnS NCs, respectively. PL spe...

متن کامل

One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 ce...

متن کامل

Green synthesis and potential application of low-toxic Mn : ZnSe/ZnS core/shell luminescent nanocrystals.

A microwave-assisted synthetic procedure is presented for the preparation of low-toxic Mn:ZnSe/ZnS core/shell nanocrystals to label antibodies for selective detection of human immunoglobulin G (IgG) based on fluorescence resonance energy transfer (FRET) between the Mn:ZnSe/ZnS and Au nanoparticles (AuNPs).

متن کامل

Synthesis of Efficiently Green Luminescent CdSe/ZnS Nanocrystals Via Microfluidic Reaction

Quantum dots with emission in the spectral region from 525 to 535 nm are of special interest for their application in green LEDs and white-light generation, where CdSe/ZnS core-shell structured nanocrystals (NCs) are among promising candidates. In this study, triple-ligand system (trioctylphosphine oxide–oleic acid–oleylamine) was designed to improve the stability of CdSe NCs during the early r...

متن کامل

Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission

A new method for the capping of colloidal CdS nanocrystals with ZnS shells is presented. A combination of the monomolecular precursor zinc ethylxanthate (Zn(ex)2) and zinc stearate was used to replace hazardous organometallic reagents usually applied in this procedure, i.e. bis(trimethylsilyl) sulfide and diethylzinc. Its simple preparation, air-stability and low decomposition temperature of 15...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2007